

Cambridge International AS & A Level

MATHEMATICS (9709) P3

TOPIC WISE QUESTIONS + ANSWERS | COMPLETE SYLLABUS

Chapter 4

Differentiation

 $112.\ 9709_s20_qp_31\ Q:\ 4$

The	The curve with equation $y = e^{2x}(\sin x + 3\cos x)$ has a stationary point in the interval $0 \le x \le \pi$.				
(a)	Find the <i>x</i> -coordinate of this point, giving your answer correct to 2 decimal places. [4]				
	Co				
	100				
(b)	Determine whether the stationary point is a maximum or a minimum. [2]				

 $113.\ 9709_s20_qp_32\ Q:\ 4$

Δ	curve	has	equation	v -	cos v	· cin	2r
$\boldsymbol{\Box}$	cui ve	mas	equation	· y —	$\cos \lambda$	2111	Δn .

Find the x-coordinate of the stationary point in the interval $0 < x < \frac{1}{2}\pi$, giving your answer correct to 3 significant figures.
. 29

114. 9709_s20_qp_33 Q: 4

The equation	of a c	curve is	<i>y</i> =	$x \tan^{-1}$	$\left(\frac{1}{2}x\right)$
--------------	--------	----------	------------	---------------	-----------------------------

) Find $\frac{dy}{dx}$.					[3]
					•••••
•••••					•••••
				0	
				10	
The tangen $(0, p)$.	t to the curve at th	e point where <i>x</i> =	= 2 meets the y-a	axis at the point with coordin	ates
Find p .		00			[3]
	AO				
••					•••••
**					

 $115.\ 9709_w20_qp_31\ Q:\ 3$

The	parametric	equations	of a	curve	are

$x = 3 - \cos 2\theta$, $y = 2\theta + \sin 2\theta$	2θ
---	-----------

for $0 < \theta < \frac{1}{2}\pi$.

Show that $\frac{dy}{dx} = \cot \theta$.	[5]
	. Ø
	0

116. $9709_{20}qp_{32}$ Q: 5

The diagram shows the curve with parametric equations

$$x = \tan \theta$$
, $y = \cos^2 \theta$,

for $-\frac{1}{2}\pi < \theta < \frac{1}{2}\pi$.

Show that the gradient of the curve at the point with parameter θ is $-2 \sin \theta \cos^3 \theta$.	[3
	>
	••••••
160,	
	•••••••
••	

(b)

The gradient of the curve has its maximum value at the point P.

Find the exact value of the x -coordinate of P .	[4]
	.0,
	O
.00	

117. $9709 m19 qp_32$ Q: 5

$\frac{\mathrm{d}y}{\mathrm{d}x} =$	$= \frac{1}{\cos x \sqrt{(\cos 2x)}}.$	[5]
		0-
		\(\)
	4	
	10	
	()	

The variables x and y satisfy the relation $\sin y = \tan x$, where $-\frac{1}{2}\pi < y < \frac{1}{2}\pi$. Show that

 $118.\ 9709_m19_qp_32\ Q:\ 10$

The diagram shows the curve $y = \sin^3 x \sqrt{(\cos x)}$ for $0 \le x \le \frac{1}{2}\pi$, and its maximum point M.

Using the substitution $u = \cos x$, by the curve and the x-axis.	find by integration the exact area of the shaded region bound
	O**

Showing all your working, find the x-coordinate of M, giving your answer correct to 3 decima places.
<u> </u>
000

find the gradient	of the curve $x^3 + 1$	$3xy^2 - y^3 = 1$	at the point with	coordinates (1, 3).	
			•••••		•••••
••••••		•••••			
••••••		•••••••			•••••
				(Z
				. 29	
				VO Y	
			- 4		
•••••					
••••••	•••••	6			•••••
			<i>Y</i>		
••••••					
AA 4		•••••			•••••
·············					
•••••		•••••			•••••

 $120.\ 9709_s19_qp_32\ Q:\ 4$

Find the exact coordinates of the point on the curve $y = \frac{1}{2}$	$=\frac{x}{1+\ln x}$ at which the gradient of the tangent
is equal to $\frac{1}{4}$.	[7]
1 4	
	.0,
	
~~~	
V. O. C.	
***	





 $121.\ 9709_s19_qp_32\ Q:\ 10$ 



The diagram shows the curve  $y = \sin 3x \cos x$  for  $0 \le x \le \frac{1}{2}\pi$  and its minimum point M. The shaded region R is bounded by the curve and the x-axis.

<b>(i)</b>	By expanding $\sin(3x + x)$ and $\sin(3x - x)$ show that
	$\sin 3x \cos x = \frac{1}{2}(\sin 4x + \sin 2x).$ [3]
(ii)	Using the result of part (i) and showing all necessary working, find the exact area of the region <i>R</i> . [4]











122. 9709_s19_qp_33 Q: 4

The equation of a curve is  $y = \frac{1 + e^{-x}}{1 - e^{-x}}$ , for x > 0.

Show that $\frac{dy}{dx}$ is always negative.	
	\C_1
	40
	•
.0	







The gradient of the curve is equal to $-1$ when $x = a$ . Show that $a$ satisfies the equal $e^{2a} - 4e^a + 1 = 0$ . Hence find the exact value of $a$ .	[4]
	•••••
	•••••
<u> </u>	
	•••••
	•••••
	•••••
**	
***	





 $123.\ 9709_s19_qp_33\ Q\hbox{:}\ 7$ 

The curve  $y = \sin(x + \frac{1}{3}\pi)\cos x$  has two stationary points in the interval  $0 \le x \le \pi$ .

(i)	Find $\frac{dy}{dx}$ .	[2]
(ii)	By considering the formula for $\cos(A + B)$ , show that, at the stationary points on the $\cos(2x + \frac{1}{3}\pi) = 0$ .	rve, [2]
(ii)	By considering the formula for $\cos(A+B)$ , show that, at the stationary points on the cu $\cos(2x+\frac{1}{3}\pi)=0$ .	
(ii)	By considering the formula for $\cos(A + B)$ , show that, at the stationary points on the cu $\cos(2x + \frac{1}{3}\pi) = 0$ .	
(ii)	By considering the formula for $\cos(A+B)$ , show that, at the stationary points on the $\cot\cos(2x+\frac{1}{3}\pi)=0$ .	
(ii)	By considering the formula for $\cos(A+B)$ , show that, at the stationary points on the cu $\cos(2x+\frac{1}{3}\pi)=0$ .	
(ii)	$\cos(2x + \frac{1}{3}\pi) = 0.$	[2]
(ii)	$\cos(2x + \frac{1}{3}\pi) = 0.$	[2]
(ii)	$\cos(2x + \frac{1}{3}\pi) = 0.$	
(ii)	$\cos(2x + \frac{1}{3}\pi) = 0.$	
(ii)	$\cos(2x + \frac{1}{3}\pi) = 0.$	







•••••			•••••
•••••			
•••••			•••••
••••••			W _{ii}
			9
•••••			•••••
		10	
•••••			•••••
			•••••
•••••			
	-70		
•••••		•••••	•••••
••••••			•••••
46.4			
			•••••
			•••••





 $124.\ 9709_w19_qp_31\ Q:\ 3$ 

The	parametric	equations	of a	curve	are

	$x = 2t + \sin 2t,$	$y = \ln(1 - \cos 2t).$	
Show that $\frac{dy}{dx} = \csc 2t$ .			[5]
			 ••••••

CY
-20
~0°
VO.0.





125. 9709_w19_qp_32 Q: 2

The curve with equation $y = \frac{e^{-2x}}{1-x^2}$ has a stationary point in the interval $-1 < x < 1$ . Find $\frac{dy}{dx}$ and
hence find the x-coordinate of this stationary point, giving the answer correct to 3 decimal places.
[5]
20
**





 $126.\ 9709_w19_qp_32\ Q{:}\ 5$ 

The equation of a curve is $2x^2y - xy^2 = a^3$ , where a is a positive constant. Show that there is only or point on the curve at which the tangent is parallel to the x-axis and find the y-coordinate of this point [7]	nt. 7]
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
**	
***	•••
	•••
	•••
	•••
	•••





## CHAPTER 4. DIFFERENTIATION





127. 9709_w19_qp_33 Q: 4

By first expanding $\tan(2x + x)$ , show that the equation $\tan^4 x - 12 \tan^2 x + 3 = 0$ .	
***	







Hence solve the equation $\tan 3x = 3 \cot x$ for $0^{\circ} < x < 90^{\circ}$ .	[
70	
<b>10</b> 00	
	•••••
***	
	•••••





 $128.\ 9709_m18_qp_32\ Q{:}\ 5$ 

The parametric equations of a curve are

$$x = 2t + \sin 2t$$
,  $y = 1 - 2\cos 2t$ ,

for  $-\frac{1}{2}\pi < t < \frac{1}{2}\pi$ .

Show that $\frac{d!}{d!}$	x = tantt		
•••••	•••••	•••••	
• • • • • • • • • • • • • • • • • • • •	•••••	•••••	
••••••	•••••	•••••	
			.0
			10
			403
		-10	
	100		
	<u>/</u>		
<u></u>			
***			
		•••••	







Give your answer correct to 3 significant figures.





129. 9709_s18_qp_31 Q: 3

A curve has equation $y = \frac{e^{3x}}{\tan \frac{1}{2}x}$ . Find the x-coordinates of the stationary points of the curve in t	he
2	[6]
interior of the time of the point union of the continue princes.	.~1
	••••
	••••
	••••
	• • • •
	• • • •
XO '	
	••••
	••••
	••••
	••••
	••••
	• • • •
	••••
	••••
	••••







**(i)** 

 $130.\ 9709_s18_qp_32\ Q{:}\ 5$ 

The equation of a curve is  $x^2(x + 3y) - y^3 = 3$ .

Show that $\frac{dy}{dy} = \frac{x^2 + 2xy}{x^2 + 2xy}$	[4]
Show that $\frac{dy}{dx} = \frac{x^2 + 2xy}{y^2 - x^2}$ .	[4]
	0.
	<b>"</b>
•. C) '	
	· · · · · · · · · · · · · · · · · · ·
<b>*</b>	
•	
	•••••
	•••••
	• • • • • • • • • • • • • • • • • • • •





normal is 1								
•••••		•••••	•••••			•••••		•••••
••••••		••••••	•••••		•••••••	••••••	•••••	•••••
		•••••	•••••					• • • • • • • • • • • • • • • • • • • •
	•••••	•••••	••••			••••••		•••••
							O.	
							A	
						. 0		
	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •				•••••
••••••		••••••	•••••	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	
				-	1			
		•••••	•••••					
				O	*			
••••••	•••••	•••••				•••••	•••••	• • • • • • • • • • • • • • • • • • • •
		À	10					
		4						
•••••		30				•••••		•••••
••••••		<u> </u>	•••••		••••••		• • • • • • • • • • • • • • • • • • • •	
		/						
**								
•••••		••••••	•••••			••••••		
							• • • • • • • • • • • • • • • • • • • •	





**(i)** 

 $131.\ 9709_s18_qp_33\ Q:\ 8$ 

The equation of a curve is  $2x^3 - y^3 - 3xy^2 = 2a^3$ , where *a* is a non-zero constant.

Show that $\frac{dy}{dx} = \frac{2x^2 - y^2}{y^2 + 2xy}.$	[4]
	<b>&amp;</b>
	<b>?</b>





•••••		•••••		•••••	•••••	••••••	•••••
•••••				•••••	•••••	••••••	•••••
•••••		•••••		••••••	••••••	••••••••	••••••
					•••••		
•••••		•••••		•••••	•••••	••••••	
							<u> </u>
						4	
• • • • • •				•••••			•••••
						,	
•••••		•••••		•••••			•••••
				47			
					<i></i>		
			-				
•••••				<b></b>	•••••	••••••	•••••
			0				
		_		••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••
				•••••	•••••		
•••••		······			••••••		
	**						
	* 3						
•••••					•••••		
•••••				•••••	••••••		•••••





132. 9709_w18_qp_31 Q: 4

The 1	parametric	equations	of a	curve	are
1116	parameurc	equations	or a	curve	are

 $x = 2\sin\theta + \sin 2\theta$ ,  $y = 2\cos\theta + \cos 2\theta$ ,

where  $0 < \theta < \pi$ .

(i)	Obtain an expression for $\frac{dy}{dx}$ in terms of $\theta$ .	[3]
		•••••
	0-	••••
		••••
		·••••
		·••••
		••••
		•••••
		••••
		•••••
		•••••
		•••••
		••••
		••••
	*	••••
		•••••
		•••••
		••••
		••••
		••••





у-	axis.
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
	<i>F</i> ' <i>O</i> '
•••	
•••	ACO V
•••	
•••	
•••	
•••	
•••	





 $133.\ 9709_m17_qp_32\ Q:\ 3$ 

(i) By sketching suitable graphs, show that the equation  $e^{-\frac{1}{2}x} = 4 - x^2$  has one positive root and one negative root.

(ii)	Verify by calculation that the negative root lies between $-1$ and $-1.5$ . [2]
	200
	**





Use the iterative formula $x_{n+1} = -\sqrt{4 - e^{-\frac{1}{2}x_n}}$ to determine this root correct to 2 decimal pl Give the result of each iteration to 4 decimal places.
Give the result of each iteration to 4 decimal places.
A.O.
**





 $134.\ 9709_m17_qp_32\ Q:\ 5$ 

The curve with equation $y = e^{-ax} \tan x$ , where a is a positive constant, has only one point in the interval
The curve with equation $y = e^{-ax} \tan x$ , where $a$ is a positive constant, has only one point in the interval $0 < x < \frac{1}{2}\pi$ at which the tangent is parallel to the $x$ -axis. Find the value of $a$ and state the exact value of the $x$ -coordinate of this point.
C Y
10°0
**





 $135.\ 9709_s17_qp_31\ Q{:}\ 4$ 

TI		4:		- C -		
1 ne	Darame	ипс е	auations	or a	curve	are

 $x = \ln \cos \theta$ ,  $y = 3\theta - \tan \theta$ ,

where  $0 \le \theta < \frac{1}{2}\pi$ .

Express $\frac{dy}{dx}$ in terms of tan	•		
		•••••	
			_0
			30
			XO.
		•	
			<u> </u>
		<b></b>	
	0	<u>K</u>	
	201		
	<b>~</b>		
•			







to 1. [3]





 $136.\ 9709_s17_qp_32\ Q:\ 4$ 

**(i)** 

The parametric equations of a curve are

x	=	$t^2$	+	1.	у	=	4t	+	1n <i>l</i>	2t	 1)	١.
л	_	ı	-	1,	y	_	$\neg \iota$	_	111/		 ı,	٠,

Express $\frac{dy}{dx}$ in terms of $t$ .	[3]
	<del></del>
	••••••







.)	Find the equation of the normal to the curve at the point where $t = 1$ . Give your answer in t form $ax + by + c = 0$ .
	***





 $137.\ 9709_s17_qp_33\ Q{:}\ 5$ 

**(i)** 

A curve has equation  $y = \frac{2}{3} \ln(1 + 3\cos^2 x)$  for  $0 \le x \le \frac{1}{2}\pi$ .

Express $\frac{dy}{dx}$ in terms of $\tan x$ .	[4]
	) ·
40	
***	







correct to 3 sig	gnificant figures.
•••••	
• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
	A'O'
•••••	
44	
	· · · · · · · · · · · · · · · · · · ·
•••••	
•••••	
•••••	





138. 9709_w17_qp_31 Q: 5

**(i)** 

The equation of a curve is  $2x^4 + xy^3 + y^4 = 10$ .

Show that $\frac{dy}{dx} = -\frac{8x^3 + y^3}{3xy^2 + 4y^3}$ .	[4]
	<u></u>
**	







•	and find the coordinates of these points. [4]
	20
	***





139. 9709_w17_qp_32 Q: 4

The curve with equation $y = \frac{2 - \sin x}{\cos x}$ has one stationary point in the interval $-\frac{1}{2}\pi < x < \frac{1}{2}\pi$ .	
(i) Find the exact coordinates of this point.	

Find the exact coordinates of this point.	[5]
	<u> </u>
<u> </u>	
£9°	







(ii)	Determine whether this point is a maximum or a minimum point.	2]
		••
		••
		••
		••
		••
		••
	NO Y	
		••
		••
		••
		••
	······································	••
		••
		••
		••
		•





140. 9709_w17_qp_32 Q: 6

**(i)** 

The equation of a curve is  $x^3y - 3xy^3 = 2a^4$ , where a is a non-zero constant.

Show that $\frac{dy}{dx} =$	$: \frac{3x^2y - 3y^3}{9xy^2 - x^3}.$			[4]
••••••				Ò
			<b>,,()</b>	
			Xo.	
		630		
		~		
		<u> </u>		
	70,0			
••				
***				







( <b>ii</b> ) H	Hence show that there are only two points on the curve at which the tangent is parallel to the x-axis and find the coordinates of these points.
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	





 $141.\ 9709_m16_qp_32\ Q:\ 6$ 

A curve has equation

$$\sin y \ln x = x - 2 \sin y,$$

for 
$$-\frac{1}{2}\pi \le y \le \frac{1}{2}\pi$$
.

- (i) Find  $\frac{dy}{dx}$  in terms of x and y. [5]
- (ii) Hence find the exact x-coordinate of the point on the curve at which the tangent is parallel to the x-axis. [3]







142. 9709_s16_qp_31 Q: 5

The curve with equation  $y = \sin x \cos 2x$  has one stationary point in the interval  $0 < x < \frac{1}{2}\pi$ . Find the x-coordinate of this point, giving your answer correct to 3 significant figures. [6]







143. 9709_s16_qp_31 Q: 7

The equation of a curve is  $x^3 - 3x^2y + y^3 = 3$ .

(i) Show that 
$$\frac{dy}{dx} = \frac{x^2 - 2xy}{x^2 - y^2}$$
. [4]

(ii) Find the coordinates of the points on the curve where the tangent is parallel to the x-axis. [5]







 $144.\ 9709_s16_qp_32\ Q:\ 4$ 

The curve with equation  $y = \frac{(\ln x)^2}{x}$  has two stationary points. Find the exact values of the coordinates of these points.







$$145.\ 9709_s16_qp_33\ Q:\ 4$$

The parametric equations of a curve are

$$x = t + \cos t, \qquad y = \ln(1 + \sin t),$$

where  $-\frac{1}{2}\pi < t < \frac{1}{2}\pi$ .

(i) Show that 
$$\frac{dy}{dx} = \sec t$$
. [5]

(ii) Hence find the x-coordinates of the points on the curve at which the gradient is equal to 3. Give your answers correct to 3 significant figures. [3]







 $146.\ 9709_w16_qp_31\ \ Q:\ 4$ 

The equation of a curve is  $xy(x - 6y) = 9a^3$ , where a is a non-zero constant. Show that there is only one point on the curve at which the tangent is parallel to the x-axis, and find the coordinates of this point.







147. 9709_w16_qp_33 Q: 2

The equation of a curve is  $y = \frac{\sin x}{1 + \cos x}$ , for  $-\pi < x < \pi$ . Show that the gradient of the curve is positive for all x in the given interval. [4]







 $148.\ 9709_s15_qp_31\ \ Q:\ 4$ 

The equation of a curve is

$$y = 3\cos 2x + 7\sin x + 2.$$

Find the *x*-coordinates of the stationary points in the interval  $0 \le x \le \pi$ . Give each answer correct to 3 significant figures. [7]







149. 9709_s15_qp_32 Q: 3

A curve has equation  $y = \cos x \cos 2x$ . Find the x-coordinate of the stationary point on the curve in the interval  $0 < x < \frac{1}{2}\pi$ , giving your answer correct to 3 significant figures. [6]







 $150.\ 9709_s15_qp_33\ Q:\ 4$ 

The curve with equation  $y = \frac{e^{2x}}{4 + e^{3x}}$  has one stationary point. Find the exact values of the coordinates of this point. [6]







151.  $9709_s15_qp_33$  Q: 5

The parametric equations of a curve are

$$x = a\cos^4 t$$
,  $y = a\sin^4 t$ ,

where a is a positive constant.

(i) Express 
$$\frac{dy}{dx}$$
 in terms of t. [3]

(ii) Show that the equation of the tangent to the curve at the point with parameter t is

$$x\sin^2 t + y\cos^2 t = a\sin^2 t\cos^2 t.$$
 [3]

Palpa Califillia (iii) Hence show that if the tangent meets the x-axis at P and the y-axis at Q, then

where O is the origin.

[2]





 $152.\ 9709_w15_qp_31\ \ Q{:}\ 5$ 

The equation of a curve is  $y = e^{-2x} \tan x$ , for  $0 \le x < \frac{1}{2}\pi$ .

- (i) Obtain an expression for  $\frac{dy}{dx}$  and show that it can be written in the form  $e^{-2x}(a+b\tan x)^2$ , where a and b are constants. [5]
- (ii) Explain why the gradient of the curve is never negative. [1]
- (iii) Find the value of x for which the gradient is least. [1]







153.  $9709_{\text{w}}15_{\text{qp}}33$  Q: 3

A curve has equation

$$y = \frac{2 - \tan x}{1 + \tan x}.$$

Find the equation of the tangent to the curve at the point for which  $x = \frac{1}{4}\pi$ , giving the answer in the form y = mx + c where c is correct to 3 significant figures. [6]









