Cambridge International AS & A Level ## MATHEMATICS (9709) P3 TOPIC WISE QUESTIONS + ANSWERS | COMPLETE SYLLABUS Chapter 4 ## Differentiation $112.\ 9709_s20_qp_31\ Q:\ 4$ | The | The curve with equation $y = e^{2x}(\sin x + 3\cos x)$ has a stationary point in the interval $0 \le x \le \pi$. | | | | | |------------|---|--|--|--|--| | (a) | Find the <i>x</i> -coordinate of this point, giving your answer correct to 2 decimal places. [4] | Co | | | | | | | | | | | | | | 100 | | | | | | (b) | Determine whether the stationary point is a maximum or a minimum. [2] | $113.\ 9709_s20_qp_32\ Q:\ 4$ | Δ | curve | has | equation | v - | cos v | · cin | 2r | |---------------------|--------|-----|----------|-------|----------------|-------|--------------| | $\boldsymbol{\Box}$ | cui ve | mas | equation | · y — | $\cos \lambda$ | 2111 | Δn . | | Find the x-coordinate of the stationary point in the interval $0 < x < \frac{1}{2}\pi$, giving your answer correct to 3 significant figures. | |---| | | | | | | | | | | | | | . 29 | 114. 9709_s20_qp_33 Q: 4 | The equation | of a c | curve is | <i>y</i> = | $x \tan^{-1}$ | $\left(\frac{1}{2}x\right)$ | |--------------|--------|----------|------------|---------------|-----------------------------| |--------------|--------|----------|------------|---------------|-----------------------------| |) Find $\frac{dy}{dx}$. | | | | | [3] | |--------------------------|----------------------|--------------------------|-------------------|--------------------------------|-------| ••••• | | ••••• | | | | | ••••• | | | | | | 0 | | | | | | | 10 | The tangen $(0, p)$. | t to the curve at th | e point where <i>x</i> = | = 2 meets the y-a | axis at the point with coordin | ates | | Find p . | | 00 | | | [3] | | | AO | | | | | | | | | | | | | •• | | | | | ••••• | | ** | $115.\ 9709_w20_qp_31\ Q:\ 3$ | The | parametric | equations | of a | curve | are | |-----|------------|-----------|------|-------|-----| | | | | | | | | $x = 3 - \cos 2\theta$, $y = 2\theta + \sin 2\theta$ | 2θ | |---|-----------| |---|-----------| for $0 < \theta < \frac{1}{2}\pi$. | Show that $\frac{dy}{dx} = \cot \theta$. | [5] | |---|------------| | | | | | | | | | | | . Ø | | | 0 | 116. $9709_{20}qp_{32}$ Q: 5 The diagram shows the curve with parametric equations $$x = \tan \theta$$, $y = \cos^2 \theta$, for $-\frac{1}{2}\pi < \theta < \frac{1}{2}\pi$. | Show that the gradient of the curve at the point with parameter θ is $-2 \sin \theta \cos^3 \theta$. | [3 | |--|-------------| | | > | •••••• | | | | | | | | 160, | | | | ••••••• | | •• | **(b)** The gradient of the curve has its maximum value at the point P. | Find the exact value of the x -coordinate of P . | [4] | |--|-----| .0, | | | O | .00 | 117. $9709 m19 qp_32$ Q: 5 | $\frac{\mathrm{d}y}{\mathrm{d}x} =$ | $= \frac{1}{\cos x \sqrt{(\cos 2x)}}.$ | [5] | |-------------------------------------|--|-------------| 0- | | | | | | | | | | | | | | | | \(\) | | | 4 | | | | 10 | | | | | | | | () | The variables x and y satisfy the relation $\sin y = \tan x$, where $-\frac{1}{2}\pi < y < \frac{1}{2}\pi$. Show that $118.\ 9709_m19_qp_32\ Q:\ 10$ The diagram shows the curve $y = \sin^3 x \sqrt{(\cos x)}$ for $0 \le x \le \frac{1}{2}\pi$, and its maximum point M. | Using the substitution $u = \cos x$, by the curve and the x-axis. | find by integration the exact area of the shaded region bound | |--|---| O** | | | | | | | | **** | | | | | | | | | | | | | | | | | | Showing all your working, find the x-coordinate of M, giving your answer correct to 3 decima places. | |--| <u> </u> | | | | | | | | | | | | 000 | find the gradient | of the curve $x^3 + 1$ | $3xy^2 - y^3 = 1$ | at the point with | coordinates (1, 3). | | |-------------------|------------------------|-------------------|-------------------|---------------------|-------| | | | | | | | | | | | ••••• | | ••••• | | | | | | | | | | | | | | | | •••••• | | ••••• | | | | | | | | | | | | | | | | | | | •••••• | | ••••••• | | | ••••• | (| Z | | | | | | | | | | | | | . 29 | VO Y | | | | | | - 4 | | | | ••••• | •••••• | ••••• | 6 | | | ••••• | | | | | <i>Y</i> | | | | | | | | | | | •••••• | AA 4 | | ••••• | | | ••••• | | ············· | | | | | | | | | | | | | | ••••• | | ••••• | | | ••••• | $120.\ 9709_s19_qp_32\ Q:\ 4$ | Find the exact coordinates of the point on the curve $y = \frac{1}{2}$ | $=\frac{x}{1+\ln x}$ at which the gradient of the tangent | |--|---| | is equal to $\frac{1}{4}$. | [7] | | 1 4 | .0, | | | | | | | | | ~~~ | | | | | | | | | V. O. C. | | | | | | | | | | | | | | | *** | $121.\ 9709_s19_qp_32\ Q:\ 10$ The diagram shows the curve $y = \sin 3x \cos x$ for $0 \le x \le \frac{1}{2}\pi$ and its minimum point M. The shaded region R is bounded by the curve and the x-axis. | (i) | By expanding $\sin(3x + x)$ and $\sin(3x - x)$ show that | |------------|--| | | $\sin 3x \cos x = \frac{1}{2}(\sin 4x + \sin 2x).$ [3] | | | | | | | | (ii) | Using the result of part (i) and showing all necessary working, find the exact area of the region <i>R</i> . [4] | | | | | | | 122. 9709_s19_qp_33 Q: 4 The equation of a curve is $y = \frac{1 + e^{-x}}{1 - e^{-x}}$, for x > 0. | Show that $\frac{dy}{dx}$ is always negative. | | |---|------| \C_1 | | | 40 | | | | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | .0 | The gradient of the curve is equal to -1 when $x = a$. Show that a satisfies the equal $e^{2a} - 4e^a + 1 = 0$. Hence find the exact value of a . | [4] | |---|-------| | | | | | | | | | | | | | | ••••• | | | | | | | | | | | | ••••• | <u> </u> | ••••• | | | | | | | | | | | | ••••• | | | | | | ••••• | | | | | | | | | | | ** | | | *** | $123.\ 9709_s19_qp_33\ Q\hbox{:}\ 7$ The curve $y = \sin(x + \frac{1}{3}\pi)\cos x$ has two stationary points in the interval $0 \le x \le \pi$. | (i) | Find $\frac{dy}{dx}$. | [2] | |------|--|-------------| (ii) | By considering the formula for $\cos(A + B)$, show that, at the stationary points on the $\cos(2x + \frac{1}{3}\pi) = 0$. | rve,
[2] | | (ii) | By considering the formula for $\cos(A+B)$, show that, at the stationary points on the cu $\cos(2x+\frac{1}{3}\pi)=0$. | | | (ii) | By considering the formula for $\cos(A + B)$, show that, at the stationary points on the cu $\cos(2x + \frac{1}{3}\pi) = 0$. | | | (ii) | By considering the formula for $\cos(A+B)$, show that, at the stationary points on the $\cot\cos(2x+\frac{1}{3}\pi)=0$. | | | (ii) | By considering the formula for $\cos(A+B)$, show that, at the stationary points on the cu $\cos(2x+\frac{1}{3}\pi)=0$. | | | (ii) | $\cos(2x + \frac{1}{3}\pi) = 0.$ | [2] | | (ii) | $\cos(2x + \frac{1}{3}\pi) = 0.$ | [2] | | (ii) | $\cos(2x + \frac{1}{3}\pi) = 0.$ | | | (ii) | $\cos(2x + \frac{1}{3}\pi) = 0.$ | | | (ii) | $\cos(2x + \frac{1}{3}\pi) = 0.$ | | | ••••• | | | ••••• | |--------|-----|-------|-----------------| | | | | | | ••••• | ••••• | | | ••••• | | | | | | | •••••• | | | W _{ii} | | | | | 9 | | | | | | | | | | | | | | | | | ••••• | | | ••••• | | | | 10 | | | ••••• | | | ••••• | | | | | | | | | | | | | | | ••••• | | | | | | | ••••• | | | | | | -70 | | | | ••••• | | ••••• | ••••• | | | | | | | •••••• | | | ••••• | | | | | | | | | | | | | | | | | 46.4 | | | | | | | | ••••• | | | | | | | | | | ••••• | $124.\ 9709_w19_qp_31\ Q:\ 3$ | The | parametric | equations | of a | curve | are | |-----|------------|-----------|------|-------|-----| | | | | | | | | | $x = 2t + \sin 2t,$ | $y = \ln(1 - \cos 2t).$ | | |---------------------------------------|---------------------|-------------------------|------------| | Show that $\frac{dy}{dx} = \csc 2t$. | | | [5] | | | | |
 | | | | | | | | | |
•••••• | | | | | | | CY | |-------| | -20 | | ~0° | | VO.0. | | | | | | | | | | | | | | | 125. 9709_w19_qp_32 Q: 2 | The curve with equation $y = \frac{e^{-2x}}{1-x^2}$ has a stationary point in the interval $-1 < x < 1$. Find $\frac{dy}{dx}$ and | |--| | hence find the x-coordinate of this stationary point, giving the answer correct to 3 decimal places. | | [5] | 20 | | | | | | | | | | | | | | | | | | ** | | | | | | | | | | | | | | | $126.\ 9709_w19_qp_32\ Q{:}\ 5$ | The equation of a curve is $2x^2y - xy^2 = a^3$, where a is a positive constant. Show that there is only or point on the curve at which the tangent is parallel to the x-axis and find the y-coordinate of this point [7] | nt.
7] | |--|-----------| ••• | | | | | | ••• | | | | | | ••• | | | | | | | | | ••• | | | | | | ••• | | | | | | ••• | | | | | | ••• | | | | | | | | | | | | | | | | | | ••• | | | ••• | | | | | | ••• | | ** | | | *** | ••• | | | | | | | | | ••• | | | | | | ••• | | | | | | ••• | | | | | | ••• | | | | ## CHAPTER 4. DIFFERENTIATION 127. 9709_w19_qp_33 Q: 4 | By first expanding $\tan(2x + x)$, show that the equation $\tan^4 x - 12 \tan^2 x + 3 = 0$. | | |---|--| *** | Hence solve the equation $\tan 3x = 3 \cot x$ for $0^{\circ} < x < 90^{\circ}$. | [| |--|-------| 70 | | | | | | 10 00 | | | | | | | | | | ••••• | | *** | | | | ••••• | | | | | | | | | | | | | | | | $128.\ 9709_m18_qp_32\ Q{:}\ 5$ The parametric equations of a curve are $$x = 2t + \sin 2t$$, $y = 1 - 2\cos 2t$, for $-\frac{1}{2}\pi < t < \frac{1}{2}\pi$. | Show that $\frac{d!}{d!}$ | x = tantt | | | |---|-----------|-------|-----| | | | | | | ••••• | ••••• | ••••• | | | | | | | | • | ••••• | ••••• | | | | | | | | •••••• | ••••• | ••••• | | | | | | | | | | | .0 | | | | | 10 | | | | | 403 | -10 | | | | | | | | | | | | | | 100 | | | | | | | | | | <u>/</u> | | | | | | | | | <u></u> | | | | | *** | | | | | | | ••••• | Give your answer correct to 3 significant figures. | |--| 129. 9709_s18_qp_31 Q: 3 | A curve has equation $y = \frac{e^{3x}}{\tan \frac{1}{2}x}$. Find the x-coordinates of the stationary points of the curve in t | he | |---|---------| | 2 | [6] | | interior of the time of the point union of the continue princes. | .~1 | | | | | | | | | | | | | | | •••• | | | | | | •••• | | | | | | •••• | | | | | | | | | | | | | | | • • • • | | | | | | • • • • | | XO ' | | | | | | | | | | | | | •••• | | | | | | •••• | | | | | | •••• | | | | | | | | | •••• | | | | | | •••• | | | | | | • • • • | | | | | | | | | | | | | | | •••• | | | | | | •••• | | | | | | •••• | | | | | | | **(i)** $130.\ 9709_s18_qp_32\ Q{:}\ 5$ The equation of a curve is $x^2(x + 3y) - y^3 = 3$. | Show that $\frac{dy}{dy} = \frac{x^2 + 2xy}{x^2 + 2xy}$ | [4] | |---|---| | Show that $\frac{dy}{dx} = \frac{x^2 + 2xy}{y^2 - x^2}$. | [4] | 0. | | | | | | | | | " | | •. C) ' | | | | · · · · · · · · · · · · · · · · · · · | * | | | • | ••••• | | | | | | ••••• | | | | | | • | | | | | | | | normal is 1 | | | | | | | | | |-------------|-------|----------|-------|---|---------|--------|---|---| ••••• | | ••••• | ••••• | | | ••••• | | ••••• | | | | | | | | | | | | •••••• | | •••••• | ••••• | | ••••••• | •••••• | ••••• | ••••• | ••••• | ••••• | | | | | • | | | | | | | | | | | | | ••••• | ••••• | •••• | | | •••••• | | ••••• | | | | | | | | | O. | | | | | | | | | | A | | | | | | | | | | | | | | | | | | | . 0 | | | | | ••••• | ••••• | ••••• | • | | | | ••••• | | | | | | | | | | | | •••••• | | •••••• | ••••• | • | | | • | | | | | | | | | | | | | | | | | - | 1 | | | | | | | ••••• | ••••• | | | | | | | | | | | O | * | | | | | •••••• | ••••• | ••••• | | | | ••••• | ••••• | • | | | | | | | | | | | | | | À | 10 | | | | | | | | | 4 | | | | | | | | | | | | | | | | | | ••••• | | 30 | | | | ••••• | | ••••• | | | | | | | | | | | | •••••• | | <u> </u> | ••••• | | •••••• | | • | | | | | / | | | | | | | | ** | ••••• | | •••••• | ••••• | | | •••••• | • | **(i)** $131.\ 9709_s18_qp_33\ Q:\ 8$ The equation of a curve is $2x^3 - y^3 - 3xy^2 = 2a^3$, where *a* is a non-zero constant. | Show that $\frac{dy}{dx} = \frac{2x^2 - y^2}{y^2 + 2xy}.$ | [4] | |---|--------------| | | | | | | | | | | | | | | | | | & | | | ? | ••••• | | ••••• | | ••••• | ••••• | •••••• | ••••• | |-------------|-----|--------|---|---------|---------|---|----------| ••••• | | | | ••••• | ••••• | •••••• | ••••• | | | | | | | | | | | ••••• | | ••••• | | •••••• | •••••• | •••••••• | •••••• | ••••• | | | | | | | | | | | | | ••••• | | ••••• | | ••••• | ••••• | •••••• | <u> </u> | | | | | | | | 4 | | | • • • • • • | | | | ••••• | | | ••••• | | | | | | | | , | | | ••••• | | ••••• | | ••••• | | | ••••• | | | | | | | | | | | | | | | 47 | | | | | | | | | | <i></i> | | | | | | | - | | | | | | ••••• | | | | | ••••• | •••••• | ••••• | | | | | 0 | | | | | | | | _ | | •••••• | •••••• | • | ••••• | ••••• | ••••• | | | | | | | | | | | | | ••••• | | ······ | | | •••••• | | | | | ** | | | | | | | | | * 3 | ••••• | | | | | ••••• | | | | | | | | | | | | | ••••• | | | | ••••• | •••••• | | ••••• | | | | | | | | | | | | | | | | | | | 132. 9709_w18_qp_31 Q: 4 | The 1 | parametric | equations | of a | curve | are | |-------|------------|-----------|------|-------|-----| | 1116 | parameurc | equations | or a | curve | are | $x = 2\sin\theta + \sin 2\theta$, $y = 2\cos\theta + \cos 2\theta$, where $0 < \theta < \pi$. | (i) | Obtain an expression for $\frac{dy}{dx}$ in terms of θ . | [3] | |-----|---|-------| | | | | | | | ••••• | | | | | | | 0- | •••• | | | | •••• | | | | ·•••• | | | | ·•••• | | | | •••• | | | | ••••• | | | | •••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | •••• | | | | •••• | | | * | •••• | | | | ••••• | | | | ••••• | | | | •••• | | | | •••• | | | | •••• | | | | | | у- | axis. | |-----|-----------------------| | | | | | | | ••• | | | | | | ••• | | | | | | ••• | | | | | | | | | ••• | | | | | | ••• | | | | | | ••• | | | | | | ••• | | | | | | | | | | | | | | | ••• | | | | | | ••• | | | | <i>F</i> ' <i>O</i> ' | | | | | | | | | | | ••• | | | | | | ••• | ACO V | | | | | ••• | | | | | | | | | ••• | | | | | | ••• | | | | | | ••• | | | | | | ••• | | | | | | | | | | | $133.\ 9709_m17_qp_32\ Q:\ 3$ (i) By sketching suitable graphs, show that the equation $e^{-\frac{1}{2}x} = 4 - x^2$ has one positive root and one negative root. | (ii) | Verify by calculation that the negative root lies between -1 and -1.5 . [2] | |------|---| | | 200 | | | | | | | | | ** | Use the iterative formula $x_{n+1} = -\sqrt{4 - e^{-\frac{1}{2}x_n}}$ to determine this root correct to 2 decimal pl Give the result of each iteration to 4 decimal places. | |---| | Give the result of each iteration to 4 decimal places. | A.O. | ** | $134.\ 9709_m17_qp_32\ Q:\ 5$ | The curve with equation $y = e^{-ax} \tan x$, where a is a positive constant, has only one point in the interval | |---| | The curve with equation $y = e^{-ax} \tan x$, where a is a positive constant, has only one point in the interval $0 < x < \frac{1}{2}\pi$ at which the tangent is parallel to the x -axis. Find the value of a and state the exact value of the x -coordinate of this point. | C Y | | | | | | 10°0 | | | | ** | | | | | | | | | | | | | | | $135.\ 9709_s17_qp_31\ Q{:}\ 4$ | TI | | 4: | | - C - | | | |------|--------|-------|----------|-------|-------|-----| | 1 ne | Darame | ипс е | auations | or a | curve | are | $x = \ln \cos \theta$, $y = 3\theta - \tan \theta$, where $0 \le \theta < \frac{1}{2}\pi$. | Express $\frac{dy}{dx}$ in terms of tan | • | | | |---|----------|----------|----------| | | | | | | | | | | | | | | | | | | ••••• | | | | | | _0 | | | | | 30 | | | | | XO. | | | | • | | | | | | <u> </u> | | | | | | | | | | | | | | | | | | 0 | <u>K</u> | | | | 201 | | | | | ~ | | | | | | | | | • | to 1. [3] | |-----------| $136.\ 9709_s17_qp_32\ Q:\ 4$ **(i)** The parametric equations of a curve are | x | = | t^2 | + | 1. | у | = | 4t | + | 1n <i>l</i> | 2t |
1) | ١. | |---|---|-------|---|----|---|---|--------------|---|-------------|----|--------|----| | л | _ | ı | - | 1, | y | _ | $\neg \iota$ | _ | 111/ | |
ı, | ٠, | | Express $\frac{dy}{dx}$ in terms of t . | [3] | |---|-------------| | | | | | | | | | | | | | | | •••••• | | | | | | | | | | | | | | | | | .) | Find the equation of the normal to the curve at the point where $t = 1$. Give your answer in t form $ax + by + c = 0$. | |----|--| *** | | | | | | | | | | | | | | | | $137.\ 9709_s17_qp_33\ Q{:}\ 5$ **(i)** A curve has equation $y = \frac{2}{3} \ln(1 + 3\cos^2 x)$ for $0 \le x \le \frac{1}{2}\pi$. | Express $\frac{dy}{dx}$ in terms of $\tan x$. | [4] | |--|-----|) · | | | | | 40 | *** | correct to 3 sig | gnificant figures. | |---|---------------------------------------| | | | | ••••• | | | | | | • | | | | | | • | | | | | | ••••• | | | | | | ••••• | | | | | | ••••• | | | | | | ••••• | | | | | | ••••• | | | | | | ••••• | ••••• | | | | A'O' | | | | | | | | ••••• | 44 | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | ••••• | | | | | | ••••• | | | | | | ••••• | | | | | | | | 138. 9709_w17_qp_31 Q: 5 **(i)** The equation of a curve is $2x^4 + xy^3 + y^4 = 10$. | Show that $\frac{dy}{dx} = -\frac{8x^3 + y^3}{3xy^2 + 4y^3}$. | [4] | |--|---------| | | | | | | | | | | | | | | | | | <u></u> | ** | • | and find the coordinates of these points. [4] | |---|---| 20 | *** | | | | | | | | | | | | | | | | | | | 139. 9709_w17_qp_32 Q: 4 | The curve with equation $y = \frac{2 - \sin x}{\cos x}$ has one stationary point in the interval $-\frac{1}{2}\pi < x < \frac{1}{2}\pi$. | | |---|--| | (i) Find the exact coordinates of this point. | | | Find the exact coordinates of this point. | [5] | |---|----------| | | | | | | | | | | | | | | | | | <u> </u> | | | | | <u> </u> | | | | | | | | | | | | £9° | (ii) | Determine whether this point is a maximum or a minimum point. | 2] | |------|---|----| | | | | | | | | | | | | | | | •• | | | | | | | | •• | | | | | | | | •• | •• | | | | | | | | •• | | | | | | | | •• | | | NO Y | | | | | | | | | | | | | | | | | •• | | | | | | | | •• | | | | | | | | •• | | | | | | | | •• | | | | | | | | | | | | | | | | | | | ······································ | •• | | | | | | | | •• | | | | | | | | •• | | | | | | | | •• | | | | | | | | • | | | | | | | | | 140. 9709_w17_qp_32 Q: 6 **(i)** The equation of a curve is $x^3y - 3xy^3 = 2a^4$, where a is a non-zero constant. | Show that $\frac{dy}{dx} =$ | $: \frac{3x^2y - 3y^3}{9xy^2 - x^3}.$ | | | [4] | |-----------------------------|---------------------------------------|----------|-------------|-----| •••••• | | | | Ò | | | | | ,,() | | | | | | | | | | | | Xo. | | | | | | | | | | | 630 | | | | | | ~ | | | | | | <u> </u> | | | | | 70,0 | | | | | | | | | | | •• | | | | | | *** | (ii) H | Hence show that there are only two points on the curve at which the tangent is parallel to the x-axis and find the coordinates of these points. | |-----------------|---| | • | | | | | | | | | | | | | | $141.\ 9709_m16_qp_32\ Q:\ 6$ A curve has equation $$\sin y \ln x = x - 2 \sin y,$$ for $$-\frac{1}{2}\pi \le y \le \frac{1}{2}\pi$$. - (i) Find $\frac{dy}{dx}$ in terms of x and y. [5] - (ii) Hence find the exact x-coordinate of the point on the curve at which the tangent is parallel to the x-axis. [3] 142. 9709_s16_qp_31 Q: 5 The curve with equation $y = \sin x \cos 2x$ has one stationary point in the interval $0 < x < \frac{1}{2}\pi$. Find the x-coordinate of this point, giving your answer correct to 3 significant figures. [6] 143. 9709_s16_qp_31 Q: 7 The equation of a curve is $x^3 - 3x^2y + y^3 = 3$. (i) Show that $$\frac{dy}{dx} = \frac{x^2 - 2xy}{x^2 - y^2}$$. [4] (ii) Find the coordinates of the points on the curve where the tangent is parallel to the x-axis. [5] $144.\ 9709_s16_qp_32\ Q:\ 4$ The curve with equation $y = \frac{(\ln x)^2}{x}$ has two stationary points. Find the exact values of the coordinates of these points. $$145.\ 9709_s16_qp_33\ Q:\ 4$$ The parametric equations of a curve are $$x = t + \cos t, \qquad y = \ln(1 + \sin t),$$ where $-\frac{1}{2}\pi < t < \frac{1}{2}\pi$. (i) Show that $$\frac{dy}{dx} = \sec t$$. [5] (ii) Hence find the x-coordinates of the points on the curve at which the gradient is equal to 3. Give your answers correct to 3 significant figures. [3] $146.\ 9709_w16_qp_31\ \ Q:\ 4$ The equation of a curve is $xy(x - 6y) = 9a^3$, where a is a non-zero constant. Show that there is only one point on the curve at which the tangent is parallel to the x-axis, and find the coordinates of this point. 147. 9709_w16_qp_33 Q: 2 The equation of a curve is $y = \frac{\sin x}{1 + \cos x}$, for $-\pi < x < \pi$. Show that the gradient of the curve is positive for all x in the given interval. [4] $148.\ 9709_s15_qp_31\ \ Q:\ 4$ The equation of a curve is $$y = 3\cos 2x + 7\sin x + 2.$$ Find the *x*-coordinates of the stationary points in the interval $0 \le x \le \pi$. Give each answer correct to 3 significant figures. [7] 149. 9709_s15_qp_32 Q: 3 A curve has equation $y = \cos x \cos 2x$. Find the x-coordinate of the stationary point on the curve in the interval $0 < x < \frac{1}{2}\pi$, giving your answer correct to 3 significant figures. [6] $150.\ 9709_s15_qp_33\ Q:\ 4$ The curve with equation $y = \frac{e^{2x}}{4 + e^{3x}}$ has one stationary point. Find the exact values of the coordinates of this point. [6] 151. $9709_s15_qp_33$ Q: 5 The parametric equations of a curve are $$x = a\cos^4 t$$, $y = a\sin^4 t$, where a is a positive constant. (i) Express $$\frac{dy}{dx}$$ in terms of t. [3] (ii) Show that the equation of the tangent to the curve at the point with parameter t is $$x\sin^2 t + y\cos^2 t = a\sin^2 t\cos^2 t.$$ [3] Palpa Califillia (iii) Hence show that if the tangent meets the x-axis at P and the y-axis at Q, then where O is the origin. [2] $152.\ 9709_w15_qp_31\ \ Q{:}\ 5$ The equation of a curve is $y = e^{-2x} \tan x$, for $0 \le x < \frac{1}{2}\pi$. - (i) Obtain an expression for $\frac{dy}{dx}$ and show that it can be written in the form $e^{-2x}(a+b\tan x)^2$, where a and b are constants. [5] - (ii) Explain why the gradient of the curve is never negative. [1] - (iii) Find the value of x for which the gradient is least. [1] 153. $9709_{\text{w}}15_{\text{qp}}33$ Q: 3 A curve has equation $$y = \frac{2 - \tan x}{1 + \tan x}.$$ Find the equation of the tangent to the curve at the point for which $x = \frac{1}{4}\pi$, giving the answer in the form y = mx + c where c is correct to 3 significant figures. [6]